“MAPPING PUBLIC SPACE MICRO-OCCUPATIONS: Drone-Driven Predictions of Spatial Behaviors in Carapungo, Quito”

  1. Cano-Ciborro, Víctor 4
  2. Medina, Ana 2
  3. Burgueño, Alejandro 1
  4. González-Rodríguez, Mario 3
  5. Díaz, Daniel 3
  6. Zambrano, María Rosa 3
  1. 1 Independent Researcher, Spain
  2. 2 Universidad de Las Américas, LMS, Faculty of Architecture and Design, Ecuador
  3. 3 Universidad de Las Américas, SI2Lab, Facultad de Ingeniería y Ciencias Aplicadas, Ecuador
  4. 4 Universidad Europea de Canarias, School of Architecture, Spain
Revista:
Environment and Planning B: Urban Analytics and City Science

ISSN: 2399-8083 2399-8091

Año de publicación: 2024

Volumen: 0

Número: 0

Páginas: 1-17

Tipo: Artículo

DOI: 10.1177/23998083241262548 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Environment and Planning B: Urban Analytics and City Science

Resumen

This study evaluates the spatial behavior of an intermodal transportation hub in Carapungo, one of the densest neighborhoods in Quito, Ecuador. This public infrastructure is deficient and lacks adequate equipment for the people who use, occupy, and transit within and around it, as well as for the numerous activities that occur, particularly at Carapungo’s Entry Park. Traditional methods for analyzing urban dynamics and land use are typically rigid and fail to grasp the complex and nonlinear nature of public spaces, especially in informal Global South cities. However, recent advancements in Artificial Intelligence and Machine Learning, combined with aerial drone videos, have enabled the modeling and prediction of urban dynamics beyond state regulations and formal planning. In this context, we developed a model using Computer Vision Technology and the YOLOv5 algorithm, incorporating Deep Learning training. The objective is twofold: firstly, to detect people, their movement and speed; and secondly, to produce “Occupancy” and “Count & Speed” cartographies that highlight commuters’ spatial patterns. These situated cartographies provide valuable insights into urban design, mobility, and interaction within a conflicted public space’s-built environment. The generated data offer planners and policymakers quantitative spatial information to consider local practices and dynamics in urban planning, particularly in situations of informality and insufficient urban infrastructure.

Información de financiación

Financiadores

  • Universidad de Las Americas, Quito, Ecuador
    • ARQ.AMG.20.02

Referencias bibliográficas

  • 10.1016/j.trc.2013.11.019
  • 10.1145/3309714
  • 10.1016/B978-044482537-7/50006-1
  • 10.1109/TPAMI.2016.2644615
  • 10.1111/j.1745-3933.2008.00464.x
  • 10.3390/rs14030620
  • 10.1109/AVSS.2019.8909854
  • Definición de La Estrategia de Comunicación a Operadores y Usuarios Sobre La Implementación Del Sistema Integrado de Transporte y La Tarifa Integrada de Transporte En El Distrito Metropolitano de Quito (2021). Dirección Metropolitana de Políticas y Planeamiento de la MovilidadPub. L. No. EC-EPM METRO QUITO-208964. https://www.metrodequito.gob.ec/wp-content/uploads/TDR-DEFINICION-ESTRATEGIA-DE-COMUNICACION-SISTEMA-INTEGRADO-DE-TRANSPORTE.pdf
  • 10.1109/ROBOT.2008.4543567
  • 10.3390/bdcc5040050
  • 10.4324/9780203873106
  • 10.1016/j.compenvurbsys.2023.101950
  • 10.1177/2399808319846517
  • INEC, (2022), Proyecciones Poblacionales Ecuador
  • Liu W, Anguelov D, Erhan D, et al. (2016) SSD: Single Shot MultiBox Detector. Cham: Springer, 21–37.
  • 10.1109/CVPR.2015.7298965
  • 10.5354/0718-8358.2022.67122
  • 10.1016/j.patrec.2021.05.002
  • Municipio de Quito. (2021). Administración Zonal Calderón. Quito. https://www.quito.gob.ec/administracion-zonales/administracion-calderon/
  • 10.4114/intartif.vol24iss68pp89-103
  • 10.1177/0013916518811418
  • 10.1016/j.landurbplan.2017.06.010
  • 10.5772/intechopen.73320
  • 10.1109/CVPR.2016.91
  • 10.1007/978-3-319-24574-4_28
  • 10.1111/j.1468-2427.2011.01051.x
  • Secretaría de Movilidad, (2017), Reestructuración de la Red de Transporte Público de Pasajeros del Distrito Metropolitano de Quito
  • Singla N (2014) Motion Detection Based on Frame Difference Method. International Journal of Information & Computation Technology, 1559–1565. Available at: https://api.semanticscholar.org/CorpusID:16062556.
  • 10.2148/benv.46.4.637
  • 10.1117/12.2323087
  • Thakur P, (2015), Brain tumor Detection, Segmentation Using Watershed Segmentation and Morphological Operation
  • Transporte de pasajeros (2015) Nuevo servicio de transporte para Calderón beneficia a más de 110 mil personas. Pasajeros Quito. https://www.trolebus.gob.ec/index.php?option=com_content&view=article&id=230:nuevo-servicio-de-transporte-para-calderon-beneficia-a-mas-de-110-mil-personas&catid=84&Itemid=599
  • 10.23919/EUSIPCO.2017.8081306
  • 10.3390/s20216251
  • 10.1049/ipr2.12042
  • 10.1007/s43762-021-00011-0
  • 10.3390/joitmc7010071
  • 10.1109/ICCVW54120.2021.00312
  • Alahi A, Bierlaire M and Vandergheynst P (2014) Robust real-time pedestrians detection in urban environments with low-resolution cameras. Transportation Research Part C: Emerging Technologies 39: 113–128. DOI: 10.1016/j.trc.2013.11.019.
  • Alavi HS, Churchill EF, Wiberg M, et al. (2019) Introduction to human-building interaction (HBI). ACM Transactions on Computer-Human Interaction 26(2): 1–10. DOI: 10.1145/3309714.
  • Aurenhammer F and Klein R (2000) Voronoi Diagrams**partially supported by the deutsche for- schungsgemeinschaft, grant K1 655 2-2. In: Handbook of Computational Geometry. Amsterdam, The Netherlands: Elsevier, 201–290. DOI: 10.1016/B978-044482537-7/50006-1.
  • Badrinarayanan V, Kendall A and Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 39(12): 2481–2495. DOI: 10.1109/TPAMI.2016.2644615.
  • Bramich DM (2008) A new algorithm for difference image analysis. Monthly Notices of the Royal Astro- nomical Society: Letters 386(1): L77–L81. DOI: 10.1111/j.1745-3933.2008.00464.x.
  • Butila˘ EVand Boboc RG (2022) Urban traffic monitoring and analysis using unmanned aerial vehicles (UAVs): a systematic literature review. Remote Sensing 14(3): 620. DOI: 10.3390/rs14030620.
  • Craye C and Ardjoune S (2019) Spatio-temporal semantic segmentation for drone detection. In: 2019 16th IEEE international conference on advanced video and signal based surveillance (AVSS), Taipei, Taiwan, 18-21 September 2019, 1–5. DOI: 10.1109/AVSS.2019.8909854.
  • Definición de La Estrategia de Comunicación a Operadores y Usuarios Sobre La Implementación Del Sistema Integrado de Transporte y La Tarifa Integrada de Transporte En El Distrito Metropolitano de Quito (2021). Dirección Metropolitana de Pol´ıticas y Planeamiento de la MovilidadPub. L. No. EC-EPM METRO QUITO-208964. https://www.metrodequito.gob.ec/wp-content/uploads/TDR-DEFINICION- ESTRATEGIA-DE-COMUNICACION-SISTEMA-INTEGRADO-DE-TRANSPORTE.pdf
  • Geyer C (2008) Active target search from UAVs in urban environments. In: IEEE international conference on robotics and automation, Pasadena, California, USA, 19-23 May 2008, 2366–2371. DOI: 10.1109/ ROBOT.2008.4543567.
  • Gouiaa R, Akhloufi MA and Shahbazi M (2021) Advances in convolution neural networks based crowd counting and density estimation. Big Data and Cognitive Computing 5(4): 50. DOI: 10.3390/ bdcc5040050.
  • Haraway D (2013) Simians, Cyborgs, and Women. London, UK: Routledge.
  • Hosseini M, Sevtsuk A, Miranda F, et al. (2023) Mapping the walk: a scalable computer vision approach for generating sidewalk network datasets from aerial imagery. Computers, Environment and Urban Systems 101: 101950. DOI: 10.1016/j.compenvurbsys.2023.101950. Ibrahim MR, Haworth J and Cheng T (2021) URBAN-i: from urban scenes to mapping slums, transport modes, and pedestrians in cities using deep learning and computer vision. Environment and Planning B: Urban Analytics and City Science 48(1): 76–93. DOI: 10.1177/2399808319846517.
  • INEC (2022) Proyecciones Poblacionales Ecuador. Proyecciones Poblacionales. Liu W, Anguelov D, Erhan D, et al. (2016) SSD: Single Shot MultiBox Detector. Cham: Springer, 21–37. Long J, Shelhamer E and Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), Boston, MA, 7 June 2015, 3431–3440. DOI: 10.1109/CVPR.2015.7298965.
  • Medina Gavilanes A and Cano-Ciborro V (2022) Cartographies of everyday conflicts in public spaces. In- formal micro-activities on formal infrastructure. Carapungo Entry park, Quito. Revista INVI 37(106): 149–176. DOI: 10.5354/0718-8358.2022.67122 Mokayed H, Shivakumara P, Woon HH, et al. (2021) A new DCT-PCM method for license plate number detection in drone images. Pattern Recognition Letters 148: 45–53. DOI: 10.1016/j.patrec.2021.05.002.
  • Municipio de Quito. (2021). Administración Zonal Calderón. Quito. https://www.quito.gob.ec/ administracion-zonales/administracion-calderon/ Pacheco Junior JB and Costa do Amaral HM (2021) Performance Analysis in the Segmentation of urban asphalted roads in RGB satellite images using K-Means++ and SegNet. Inteligencia Artificial 24(68): 89–103. DOI: 10.4114/intartif.vol24iss68pp89-103.
  • Park K (2020) Park and neighborhood Attributes associated with park use: an observational study using unmanned aerial vehicles. Environment and Behavior 52(5): 518–543. DOI: 10.1177/ 0013916518811418. Park K and Ewing R (2017) The usability of unmanned aerial vehicles (UAVs) for measuring park-based physical activity. Landscape and Urban Planning 167: 157–164. DOI: 10.1016/j.landurbplan.2017.06.010.
  • Półka M, Ptak S, Kuziora Ł, et al. (2018) The use of unmanned aerial vehicles by urban search and rescue groups. In: Drones - Applications. London, UK: InTech. DOI: 10.5772/intechopen.73320.
  • Redmon J, Divvala S, Girshick R, et al. (2016) You only look once: unified, real-time object detection. 2016 IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, 8th June 2016, 779–788. DOI: 10.1109/CVPR.2016.91.
  • Ronneberger O, Fischer P and Brox T (2015) U-net: convolutional networks for biomedical image seg- mentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science 9351: 34–241. doi: 10.1007/978-3-319-24574-4_28
  • Roy A (2011) Slumdog cities: rethinking subaltern urbanism. International Journal of Urban and Regional Research 35(2): 223–238. DOI: 10.1111/j.1468-2427.2011.01051.x.
  • Secretar´ıa de Movilidad, Administración General Municipio de Quito (2017) Reestructuración de la Red de Transporte Pu´blico de Pasajeros del Distrito Metropolitano de Quito. Quito: Administrac´ıon General Municipio del Distrito Metropolitano de Quito. Available at: https://www7.quito.gob.ec/mdmq_ordenanzas/ Comisiones-del-Concejo/Movilidad/2017/2017-09-05/1.-Rutas-y-frecuencias/rutas-y-frecuencias/Informe- IV_-Reestructurac´ıon-de-la-Red-de-TP-del-DMQ_Resumen-ejecutivo.Agosto-1.pdf.
  • Singla N (2014) Motion Detection Based on Frame Difference Method. International Journal of Information & Computation Technology, 1559–1565. Available at: https://api.semanticscholar.org/CorpusID:16062556.
  • Stojanovski T, Partanen J, Samuels I, et al. (2020) Viewpoint: city information modelling (CIM) and digitizing urban design practices. Built Environment 46(4): 637–646. DOI: 10.2148/benv.46.4.637.
  • Tan Y, Liu H, Zhao B, et al. (2018) UAV-image-based illegal activity detection for urban subway safety. In: Themistocleous K, Hadjimitsis DG, Michaelides S, et al. (eds) Sixth International conference on remote sensing and geoinformation of the environment (RSCy2018), Paphos, Cyprus, 6-29 March 2018, SPIE, 9. DOI: 10.1117/12.2323087.
  • Thakur P, Pahwa K and Gupta R (2015) Brain tumor Detection, Segmentation Using Watershed Segmentation and Morphological Operation. IJRET: International Journal of Research in Engineering and Technology. Available at: https://api.semanticscholar.org/CorpusID:88317235.
  • Transporte de pasajeros (2015) Nuevo servicio de transporte para Calderón beneficia a ma´s de 110 mil personas. Pasajeros Quito. https://www.trolebus.gob.ec/index.php?option=com_content&view=article& id=230:nuevo-servicio-de-transporte-para-calderon-beneficia-a-mas-de-110-mil-personas&catid=84& Itemid=599
  • Tzelepi M and Tefas A (2017) Human crowd detection for drone flight safety using convolutional neural networks. In: 2017 25th European Signal processing conference (EUSIPCO), Kos Island, Greece, 28 August 2017, 743–747. DOI: 10.23919/EUSIPCO.2017.8081306.
  • Velastin SA, Ferna´ndez R, Espinosa JE, et al. (2020) Detecting, tracking and counting people getting on/off a metropolitan train using a standard video camera. Sensors 20(21): 6251. DOI: 10.3390/s20216251.
  • Xiao Y, Zhou K, Cui G, et al. (2021) Deep learning for occluded and multi-scale pedestrian detection: a review. IET Image Processing 15(2): 286–301. DOI: 10.1049/ipr2.12042.
  • Ye X, Wang S, Lu Z, et al. (2021) Towards an AI-driven framework for multi-scale urban flood resilience planning and design. Computational Urban Science 1(1): 11. DOI: 10.1007/s43762-021-00011-0.
  • Yigitcanlar T, Corchado JM, Mehmood R, et al. (2021) Responsible urban innovation with local government artificial intelligence (AI): a conceptual framework and research agenda. Journal of Open Innovation: Technology, Market, and Complexity 7(1): 71. DOI: 10.3390/joitmc7010071.
  • Zhu X, Lyu S, Wang X, et al. (2021) TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In: 2021 IEEE/CVF international conference on computer vision workshops (ICCVW),Montreal, BC, Canada, 10 October 2021, 2778–2788. DOI: 10. 1109/ICCVW54120.2021.00312.